
Available online at www.sciencedirect.com

faces 30 (2008) 8–19
www.elsevier.com/locate/csi
Computer Standards & Inter
An open source forensic tool to visualize digital evidence

Emmanouil Vlastos a, Ahmed Patel b,c,⁎

a Department of Information and Communication Systems Engineering, University of the Aegean, Samos, Greece
b Centre for Applied Research in Information Systems, School of Computing and Information Systems, Kingston University, Kingston upon Thames, Surrey, UK

c Department of Computer Science, Faculty of Information Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor, Malaysia

Received 13 February 2007; accepted 31 March 2007
Available online 25 May 2007
Abstract

Visualizing digital evidence in an easy and constructive manner is a major problem because of the advanced techniques for hiding,
wiping, encrypting and deleting digital data developed during the last few years. To tackle this problem, a system for visualizing digital data
in 3-Dimensional (3D) mode has been developed. XML was used as a common language to allow fine-grained management of digital data with
flexibility and ease. The extensibility of the implementation makes it particularly suitable as a research and development platform in the sector of
open source computer forensics tools for the future. This article examines real-life problems that benefit from using this tool in a congenial and
constructive manner to validate its key underlining concept. The design decisions that have been taken in producing the system architecture, and
the features it supports are elaborated upon. To determine the effectiveness of the tool, an actual case study is presented which examines the results
of the tool and why it is necessary to go for an open source model as a standard. The paper concludes with performance measurements of the tool
and suggests possible extensions to make the tool even smarter.
© 2007 Published by Elsevier B.V.
Keywords: Computer forensics; Digital evidence; Digital investigation; Computer crime; Cybercrime; Java; Visualisation; Open source; XML
1. Introduction

This article attempts to overcome the limitations of existing
digital evidence presentation methods and text or command line
utilities by presenting a tool for visualizing file systems that
facilitates an intuitive view of deleted files, wiped files, en-
crypted and transformed files with the aid of a 3D visualization
technique. The tool facilitates searching for data in a specific
block or sector, navigation through a range of blocks as 3D
square box drawings, exportation and viewing of the content of
a specific file, and exploring the file list in a way which offers a
better view in presenting digital evidence in cybercrime in-
vestigations. We believe that these methods of presentation are
superior compared to non-visual or other data or text presen-
tation systems. We present the manner in which the tool was
implemented and tested from detailed system analysis with
⁎ Corresponding author. Centre for Applied Research in Information Systems,
School of Computing and Information Systems, Kingston University, Kingston
upon Thames, Surrey, UK.

E-mail address: whinchat@gmail.com (A. Patel).

0920-5489/$ - see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/j.csi.2007.03.002
screenshots to technical architectural design choices in order to
give an appropriate appreciation and understanding on how the
whole system has been developed. For the purpose of designing
and developing our open source forensic tool to visualize digital
evidence, we used open source components. We present a case
study to show that the tool satisfies user and system require-
ments and briefly discuss the limitations of the tool and what
future work is necessary to make it better.

2. Related work

There are numerous tools, such as EnCase Forensic Edition
[1], The Sleuth Kit/TSK [2], The Coroner's Toolkit [3] and
LTOOLS [4], available for both extraction and presentation of
computer data in digital forensic cases. In our research project
we took this fact into account by splitting our tool into two
smaller modules, one for the extraction process of the data and
the other for presentation of the data so that the system com-
ponents become manageable and practicable. For example, this
concept has also been shown to be the case by the Sleuth Kit
system whereby it contains smaller modules, each one acting as

mailto:whinchat@gmail.com
http://dx.doi.org/10.1016/j.csi.2007.03.002


9E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
a separate entity that outputs specific data from a hard disk
drive. For this approach to work effectively, a common data
exchange interface is needed between the modules of the tool to
communicate in a common language that overcomes any speci-
fics related to distinct syntax and semantics of the data set.

Features related to graphical and visual effects can be a very
subjective issue in the design of a system. Our project did not have
enough resources and time to investigate in any detail as towhat is
available beyond the field of digital evidence presentation and
visualization. However, one particular information presentation
and visualization system of interest was found to be Starlight [5].
It can be regarded as a forerunner in the field that utilizes advanced
information modeling and data management functionality with a
powerful graphical visualization-oriented user interface. Al-
though it can handle digital data in the form of files and act as
an information analysis and visualization tool, it is not specifically
designed for cybercrime or digital investigation. It is a general
purpose information analysis visual tool and a platform for con-
ducting advanced visualization research. It is not an open source
tool and therefore cannot be easily adapted and extended by its
users in the business of digital investigation and evidence presen-
tation. Nonetheless, the techniques used for visualizing data and
information in a variety of 3D form are recognised as a benchmark
against which such tools should be measured in the future.

When a tool or system is split into modules that need to fulfill
a common goal, then the data exchange between modules has to
take place through some common language and interface. The
Computing Department of the University of Glamorgan has
developed a draft Document Type Definition (DTD) defining an
XML-based language that is responsible for exchange of struc-
tured data between extraction and presentation modules in a
common way. The extraction module, Forensic Extraction Tool
(FET), returns the data in a prescribed way defined by the DTD,
but its implementation applied only to the Linux ‘ext2’ file-
system [6]. This extraction tool also makes use of other open
source tools for extracting digital data from a hard disk drive
developed in earlier days. The tool can be extended to support
other filesystem types while preserving the ability to output the
data in the same common way defined by the DTD.

3. Forensic tools for XML (FTXml)

In some cases re-construction of digital evidence can be a very
complex task. This ismore sowhen data have to be obtained from
a variety of sources fromwhich digital evidence can be produced.
The technologies and methods for wiping, deleting, hiding and
transforming digital data have improved over the last few years,
which makes it necessary that the process of finding those files in
a hard disk drive be also improved. In building our system, called
FTXml, to provide an improved solution to the problem, we used
other open source tools to facilitate rapid development in
recovering, extracting and presenting such digital data.

The major advantage of our visualization tool called Java
Forensic Analysis Viewer (JFAV) is that it has no need to deal
with the development of methods to retrieve deleted files, wiped
files, encrypted files or transformed files because it has the
capabilities to read any kind of data found in the XML file that
each extraction tool outputs. For example, there will be other
extraction tools that find only wiped files from a hard disk drive.
Our visualization tool (JFAV) can easily show not only the wiped
data in the samemanner but all other associated data contained in
the XML file, which is more comprehensive in its details. The
function of this tool is to analyse, interpret and understand the file
generated from FETand to output the data for the user to perform
analysis by looking at data found in more detail. This tool has
three major screens where its category of data is visualized:

▪ a 3D screen which visualizes the data (only block data in this
version) in a 3D virtual world;

▪ a tree screen which shows the tree structure of the hard disk;
and

▪ a hex viewer of the hard disk and its blocks.

A detailed description of the functionality of these three
screens is presented later in paper.

The implementation that is described here is a visualization
system offering flexible and extensible capabilities. The pro-
ject's base implementation extends the grammar of the pro-
posed FTXml DTD. In the paper, several issues and concepts of
related technologies are also discussed. The actual implemen-
tation described in this paper is a solution based on these issues
and concepts, with the express aims and objectives of the
project summarised as follows:

▪ The implementation and description of a visualization sys-
tem partially based on the proposed DTD, but also extending
it to address the identified weaknesses.

▪ The provision of an architecture that will be as extensible and
flexible as possible for future improvements, research and
addition of features as well as the integration of the imple-
mented system into a wider presentation tool.

▪ Implementation of the offered services in such a way that
they will be able to be used from a variety of programming
languages.

▪ Evaluation and testing of the implementation.
▪ Assessing possible future extension or refinements to the
implemented tool.

The rest of the paper describes the requirements, architecture,
design and implementation of the system as well as evaluates the
system and possible extensions to enhance our tool (JFAV).

4. User and system requirements

The most important requirements for the system and the user
are as follows:

▪ The user shall be able to open and load the XML file created
by FET tool, to search for data (file name, block number or a
hash value) in the partition analysed, to export data both for
files and blocks, and to print out the investigation data. In
addition the user shall be able to navigate in a 3D world
between blocks in partition displayed as square boxes and
choose any block number to view the data that box contains.



Fig. 1. High level architectural design.

10 E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
Finally, the user shall be able to see information such as
partition details (name, size, filesystem type), block data,
categorized file structure (files, directories, deleted entries,
block devices, character devices, FIFO's and sockets) and
hard disk details (name, size and number of partitions).

▪ The system shall read and load the data for further analysis,
provide appropriate viewings for the user to see the data in
hex, text, tree and 3D format, and provide a search function
for files, blocks and hashes. The system shall also provide a
printing facility to output the results of the analysis. Finally,
it is planned for the system to provide an advanced 3D
navigation facility to analyse data in real time.

5. Technical approach and design choices

The following list summarises the major choices made and
decisions taken during the design phase:

▪ Choice of using Java as the main programming language:
Platform independence is an attractive feature for a forensic
tool, allowing it to be loaded and executed on a variety of
platforms running under almost every modern operating
system. The Java Programming Language provides that feat
in addition with sufficient robustness.

▪ Choice of using Java3D as the programming framework to
build the 3D virtual world: The Java3D is more useful for
standalone applications and furthermore it is better for
professional use rather than for building a simple virtual
world for the purposes of the World Wide Web.

▪ Choice of using XML for data exchange between the
extraction tool and the presentation tool: One of the reasons
for that choice is that XML can be highly beneficial in the
proposed project for maintaining the forensic analysis data in
a structured way, which can then be used for visualizing the
data. XML is also convenient as a common format for data
exchange between different implementations.

▪ Choice of using Document Type Definition (DTD) as a
standard grammar for creating and reading the XML file:
The reason of using DTD instead of XSD is that with DTD a
simple grammar can be built from scratch and without
specific knowledge of XML technologies.

▪ Choice of Xerces2 Java Parser 2.5.01: Out of many available
XML parsers for Java, the Xerces 2 implementation of the
1 For full details visit: http://xml.apache.org/xerces2-j/index.html.
Apache XML Project is the best and the one that offers the
most features compared to all other parsers. For the purposes
of this project the Simple API for XML (SAX) will be used
as the parser interface for reading and validating the XML
document that the extraction tool generates.

6. System architecture

The main design characteristic of the implemented tool is the
flexibility and the extensibility for future improvements by
ensuring that the tool would be open source under the GNU
GPL licensing2 and can very easily be distributed to other
programmers in order to improve it. The flexibility stems from
the fact that the program uses XML for interchange of digital
data from any forensic tool that makes use of XML language for
storing the data while extracting them from any kind of source
as depicted in Fig. 1. Any tool can use this project's imple-
mentation to visualize digital data with the only requirement to
ensure that it produces a compatible XML file using the spe-
cified grammar defined in a DTD. This assists the program to
work with a variety of tools that extract digital data from a
storage device.

Another major characteristic is the 3D environment in the
presentation tool. This environment provides the option to the
specialist to navigate through a certain number of blocks in the
range 1 to 200. The environment has been built using Java3D, as
mentioned above, and is platform independent. Every additional
package that was needed and used during the development of the
program has been written in Java. The program can therefore
work under a number of operating systems for which the Java
Runtime Environment is available, including Microsoft Win-
dows, GNU/Linux, MacOSX and Solaris.

7. JFAV architectural overview

JFAV consists of two major parts, a set of extra packages
written in Java and the visualization tool, as shown in Fig. 2.

8. System design and implementation

FoXMLParser is the class responsible for handling the data
represented in XML, i.e. reading and separating the data found
in the FET-produced XML file to ensure that the visual part of
2 See http://www.gnu.org/licenses/licenses.html.

http://xml.apache.org/xerces2-j/index.html
http://www.gnu.org/licenses/licenses.html


Fig. 2. Architectural overview of the program.

11E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
the tool will display the correct data for each field in the
program. See Fig. 3 for a detailed technical diagram of creating
and use the parser from the main program.

Once the FoXMLParser is in place and operating, the
program loads all the main panels and the tool is ready for use. If
the parser reads something it cannot understand, the program
stops and a message appears showing the error that the Java
virtual machine has caught. This provides complete error re-
porting. An individual explanation of each panel and its con-
tents within the program framework is given below.
Fig. 3. Content reading
9. Presentation panels

The decision of using separate panels for showing the same
data in different ways and forms was made to easily accom-
modate new panels capable of presenting data in more advanced
ways for the visualization tool. Each panel in the JFAV program
acts independently from one another, and therefore the panels
can run as standalone programs as long as the parser's result data
is made available to these panels. When the parser has finished
reading the XML file, the main class becomes responsible for
and parser creation.



Fig. 4. 3D panel architecture.

12 E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
building the panels and supporting them with the appropriate
data to work correctly. All the data are kept in memory during
program execution to provide faster information retrieving. In
each panel class there is a public method that sets the data to the
panels fields. The Parser separates each category of data read
from XML file in separate vectors3 and thus the application can
retrieve those vectors quite easily.

10. 3D panel architecture

The 3D panel has some characteristics that are worth
mentioning. First, the fact that the program shows the results in
a 3D way makes the program quite heavy to load into the
physical memory at runtime. In the first version of the program,
during the development, we tried to implement the virtual world
to draw all the objects found in the XML file at once on the
screen. This made the program to request an extremely big
amount of physical memory, which could not be provided. The
final version includes the option for the user to choose a range
of objects between 1 and 200. Fig. 4 depicts the overall concept
of this panel.

The system allows for 3D presentation and visualisation in
three different views: the block view, the explorer view, and the
tree view. A flat file view is also available. All of them are shown
below as examples. The objects shown in 3D block view are
square boxes, allowing the user to select and open any box with
the mouse. The colour of the box changes when it is selected and
the detailed text in hex and text format appears in the lower part
3 A vector is a dynamic array used very frequently in Java.
of the panel. Fig. 5 shows a screenshot of that panel. This is an
initial attemptmade to draw the objects as boxes. The objects can
also be drawn as the representation of the file type.

As shown in Fig. 5, every box has a number above it, which
is the “block number” in the partition. When a box is chosen, the
colour changes to green and the associated contents are
displayed in the lower part as shown by (1) on the right hand
side of the picture. The blue coloured boxes are blocks that
contain metadata while the red colour is used for blocks with
data.

This design was chosen because this was our initial attempt
to visualize this kind of data in a 3D manner. There were some
difficulties regarding where to show the contents of the blocks
in the 3D world. That's why a new panel, underneath the virtual
world is created to show the hexadecimal and text representa-
tion of the block.

The 3D explorer view lists all the files as they appear on the
hard disk drive. The circles are directories and the square boxes
are single files. Dark blue circles depict system directories that
are hidden, and transparent square boxes are the hidden system
files. A double click on a directory opens that directory and
views its contents in the same arrangement. A double click on a
single file shows its data in the text section sub-window below
the 3D view. A 3D explorer view showing the contents of the
selected file as plain text and in hex format is illustrated in
Fig. 6.

The 3D Tree view as shown in Fig. 7 lists all the files as in
a common tree file explorer. The triangles on the left are the
directories listed on the hard disk drive. A double click on a
triangle displays a transparent level with the files contained



Fig. 5. 3D block view screenshot.

13E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
in the corresponding directory. The square boxes which
appear as towers indicate the size of each file. Double
clicking on a square box tower causes the program to execute
the selected file.
Fig. 6. 3D explorer v
11. Tree panel architecture

The tree panel shows to the user in a very attractive and
intuitive way the files found in the XML data file. These files
iew Screenshot.



Fig. 7. 3D tree view screenshot.

14 E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
are situated and separated into several categories under the Files
subtree. Fig. 8 shows the panel screenshot which can be found
in the left side of the panel. By selecting a leaf in the tree, the
Fig. 8. Tree pane
user can see its details in a text area next to the tree and the user
has the option to save the tree list in a plain text format. Also the
user can save the data of a selected file in its original format. For
l screenshot.



Fig. 9. Tree panel architecture.

15E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
these options two buttons in the lower part of the panel were
added. The diagram in Fig. 9 shows the interactions in an
architectural perspective of this panel.

12. Text panel architecture

The third panel, which is the last view option, has to do
with more technical reporting of the retrieved data. It shows
the data of each block found in the image of a disk drive in
hex and plain text formats. The text panel gives the option to
the user to find a block in many possible ways, as shown in
Fig. 10. Text pane
Fig. 10. A screenshot of the panel, shown in Fig. 11, illustrates
the following features:

▪ a dynamic slider, located in the right side of the panel,
which ranges over the blocks found in the examined
partition;

▪ a button called “go there” that allows the user to give a
specific block number and views directly the data of that
block;

▪ “previous” and “next” buttons to navigate slowly between
blocks in numeric order.
l architecture.



Fig. 11. Text panel screenshot.

16 E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
▪ two extra buttons called “view and “save” for viewing sep-
arately from the program the data of a block and saving that
data in a plain text file.

In all the diagrams above the single dashed arrows indicate
the extra classes or packages that were used during the devel-
opment, the double dashed arrows indicate the internal calls of
methods from the parent class, and the single line arrows
indicate an action taken during the runtime.

An important issue faced during the development of the
visualization tool was the large amounts of data that the parser
had to retrieve each time a new XML file was loaded. This was
Fig. 12. Splash screen.
the main reason for the program to be too slow when parsing the
XML file. For instance, consider an image file that contains
100,000 blocks and 1000 files, and the data of both blocks and
files should be included in the XML file. Given the typical
block size of 1024 bytes, its representation in hex (as required
by the chosen encoding for XML) is 2048 characters. The time
that the parser needs to read all that amount of information is too
long. The solution to this problem was to use two new files
where one contains only the data of the blocks and the other one
the data of the files (block_data, file_data), allowing the
presentation tool to find the data in each file separately and
sometimes in parallel, thus making it efficient.

13. Case study

To put our tool in context, let us consider a real forensic
example where we have an ext24 partition, under GNU/Linux
operating system, on a hard disk drive with the size of 20 MB.
With the help of the other tool (FET tool) three files were
created to represent the data found in that partition. FET, firstly,
creates an XML file containing all the details concerning the
structure of the partition, then creates a file containing all the
block data and finally a file containing all the file data of the
files found. When that phase is finished, the JFAV tool starts
(see Fig. 12). The user opens the XML file (causing JFAV to
read all 3 files) and begins the investigation. A confirmation
dialog appears just to show that the parsing phase was com-
pleted successfully.
4 A GNU/Linux filesystem.



Table 1
JFAV performance measurements

Action Partition size (mb) Time (s) Memory (kb)

Open file 20 1.5 4584
Load 50 boxes 0.87 6388
Load 100 boxes 0.45 16,843
Load 150 boxes 1.3 21,352
Load 200 boxes 0.6 26,543
Open file 100 5.8 7506
Load 50 boxes 0.94 9388
Load 100 boxes 0.59 18,843
Load 150 boxes 1.28 23,352
Load 200 boxes 0.72 29,543

17E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
After that, the data read is shown by the tool for investi-
gation. (Figs. 5, 6 and 9) above show a first look at the presented
data in 3D, Tree and Hexadecimal views respectively.

The user can check if the presented data are the same as the
original data in the partition being examined. By opening the
image of the partition with another forensic tool we can see that
the data in specific blocks are the same in both tools. This means
that FET extracted the data correctly, and JFAV presented them
as they are in the partition without any loss of information. Then
by choosing the Tree view in JFAV the user can save any file
from the partition examined.

For this case study we can check some performance data
including time and memory consumption. For this reason the
application provides to the user a very useful tool which is
responsible for showing the memory allocated by the program
at any time as illustrated in Fig. 13.

Table 1 shows typical measurements made using different
partition sizes and loading different number of drawn objects
(box refers to one block).

14. Results and evaluation

In general, JFAV acted without any significant problems at
runtime. It has been realised that some options offered can be
improved or replaced by other, more useful ones, but this is now
put on our enhancement list of things to do in the future. More
errors must be caught before they occur in order to achieve
higher stability. Some important extensions that might be con-
sidered for further improving the functionality of this program
are as follows.

▪ Support for filesystems: It is very important for the visu-
alization program to support all the available filesystems
because it increases its portability and extensibility to all the
platforms and operating systems. For example, consider a
presentation tool that can visualize data from any filesystem,
no matter what the size of the disk and of the data. In addition
the tool should be capable of being executed on any plat-
forms and most modern operating systems. A very good
understanding on the filesystems and how they manipulate
the data in a storage device is a prerequisite before such
improvements can be applied to the program.
Fig. 13. Memory monitor.
▪ Extend the 3D graphics: The major issue here is the memory
load if more than 200 objects will draw simultaneously in
the screen and then the program crashes with the “Out of
Memory” error. This problem can be solved by implement-
ing an algorithm that will check how many objects are found
in the XML file and then will change the size of the object in
proportion to how many objects found. The design of the 3D
graphics part of the program has been implemented in such a
way that it can be extended very easily. Some additions to the
3D graphics could be a mechanism to draw a file as a 3D
object but instead of a solid colour on it, it will draw the data
of the file. Another issue is the navigation control of the 3D
world with the keyboard and the mouse as well. Keyboard
navigation can be improved by imposing limits in the 3D
environment, disallowing further movement when those
limits are reached. The mouse movement can be added to
offer a multidimensional movement on the world.

▪ Improvement in parsing the XML file: Assuming the fact that
the data of each block and of each file is contained in the
XML file, the only way to improve the performance of the
parser is to implement a new parser that will not be able to
parse any other XML file except the specific one that com-
plies with the DTD grammar. A possible solution, avoiding
the implementation of the parser, is for the FET tool to
provide together with the XML file the original file of the
partition in the storage device. Then the JFAV tool will
search in that file with the correspondent offset and size, in
bytes, for seeking the data, instead of creating a new file
(block_data) with the data.

15. Summary discussion

During the initial development, the program looked like a
common forensic tool to visualize digital evidence. Subse-
quently, it became apparent that building a 3D world to visu-
alize evidential information made the program heavier in terms
of development effort, memory requirements and runtime per-
formance, but it was more effective for the eye to see intuitively,
and largely unique compared to other open source forensic tools
available. Although a 3D world is not essential for a pro-
fessional to work on and solve real forensic cases, it is useful in
quickly understanding the evidential information in a user
friendly, intuitive and visual manner. One possible extension to



5 FreeBSD is a registered trademark of The FreeBSD Foundation.

18 E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
the 3D view is to implement a layered structure in 3D, like a
large building with many floors and rooms, giving a global view
of the forensic evidence. This would be in line with what the
general purpose Starlight system offers today. It is deemed that
this will help the analyst and investigators to go through
complex data in a forensic analysis in an easy-to-use, painless
and confident manner.

16. Why go for open source model as standards?

3D graphical tools are very complex software systems. Giv-
ing away parts of their design and source code is also a complex
business, economic and security issue. It is widely acknowl-
edged that the debate between open source software and closed
source software is one of the most crucial issues in IT, computer
science and especially in software development. Analysts and
specialists are trying to find out which one of these two methods
is most appropriate in different circumstances and environ-
ments, but there's still a long way to go for the discussion.

The open source model works best when the users of soft-
ware are also developers, and when there are enough of them to
sustain and share the development and maintenance effort.
Small, highly specialised non-technical (or, more precisely,
non-programmer) user communities are served by closed source
software manufacturers who make, sell and support high mar-
gin, low volume, niche software. There is typically zero avail-
ability of open source solutions.

At the first glance, the target user base of forensic analysis
tools is a prime example of such a community. It is no surprise
that most other forensic tools currently available are closed
source. Because users are not perceived to be able to contribute
effectively to the development of such software, developers
view open-sourcing as a competitive disadvantage.

Another point in favour of closed source model for forensic
analysis tools arises specifically from the law enforcement
domain: certification. It is envisaged that only certified soft-
ware will be allowed in the chain of custody and for presenting
evidence in a court of law. Certification is expensive business,
and revenues from software sales are needed to recover the
cost. More importantly though, certified software cannot be
changed without re-certification, which makes open-sourcing
pointless.

However, there are many reasons why open source model
can be viable and advantageous. For instance, certification is
only important for the relatively simple trusted chain-of-custody
software; the much more complex analysis tools which help
experts find, identify and match relevant pieces of digital
evidence can be uncertified — as long as the end result can be
demonstrated with certified tools.

Aside from lower costs, there are other strong points for the
open source model, characteristic of the forensic analysis do-
main. They include training, the freedom to collaborate and
improve the software, and software re-use.

Using these tools is highly skill-hungry, and therefore
training is very important. Open source software is generally
strongly preferred for training because of no-surprise licensing
(it can be freely installed in as many copies as needed, taken
home, given multi-user access etc.) and to help (few, but pre-
cious) curious students willing to get their hands dirty “under
the bonnet”. Cost also becomes an issue, as training tends to be
a much higher-volume activity with respect to software usage
than subsequent professional use.

The freedom to improve the software – the landmark feature
of open source – also applies in this domain, considering that
investigative departments working with digital evidence often
employ programmers for in-house tasks supplementing the
main software tools. This fits well with the user–developer
principle of open source. Moreover, such departments are often
tax-funded, and therefore in many countries are obliged to make
their developments publicly available. It makes perfect sense for
them to adapt an open source model to facilitate effective
collaboration with other departments and user-driven software
development, while closed source would stifle innovation and
collaboration, hurting efficiency and public policy.

Forensic analysis tools have to deal intensively with tech-
nical details related to filesystem structure and layout. Awealth
of open source software to do that is available under licenses
which require derived products to also be open source. File-
system software used in popular open source server platforms
running such operating systems as Linux or FreeBSD5 is bul-
letproof-tested by millions of users, 100%-compatible with on-
disk images, and is readily available to an open source tool
developer. A closed-source software developer has to re-imple-
ment this functionality and continuously keep pace with all new
features and filesystems.

The modular approach taken by this project, which separates
evidence gathering and analysis, linking them with an open
standard, is proposed to facilitate both open and closed source
sides. An open, extensible and full-featured standard for data
exchange is crucially important to achieve interoperability be-
tween commercial and user-driven, closed source and open
source, certified and uncertified software tools and thus to take
the best of both worlds.

Digital forensic analysis tools require an increasingly high
degree of presentation of content in an easy to understand form
as well as an ability to export to other more powerful tools for
further extraction, analysis and presentation. The idea of sepa-
rating these tools and applying the concept of open source and
close source to make them available freely has been introduced
a few years ago by researchers and developers [7,8].

17. Conclusion

This paper described the design and implementation of a
visualization tool called JFAV for visualizing data extracted
from storage devices and represented using an XML file
method to give a more comprehensive view of digital evidence.
Many strengths and weaknesses identified in designing and
developing the JFAV tool have been highlighted throughout
this paper. The technical approach and design decisions taken
during the development of the tool were discussed and de-
scribed together with the system architecture of our tool. The



19E. Vlastos, A. Patel / Computer Standards & Interfaces 30 (2008) 8–19
currently implemented visualization styles presented in this
paper are only the beginning of more advanced features to
come in future versions of the tool. The research project,
although very small in terms of resources and funding when
compared to very large projects, offers both extensibility as
well as flexibility for further improvements in an open source
environment, geared for developing tools specifically for digi-
tal investigation purposes.

Acknowledgements

We would like to thank Ian Sutherland and Ioannis Kou-
kouras of the Computing Department of University of Glamor-
gan for collaborating in this project and Panos Soufleris for
testing the implemented visualisation software tool during the
development phase of the prototype system. We also wish to
thank Nikita Schmidt for exercising and taking the JFAV tool
through its paces, as well as offering his numerous suggestions
for improvements to the tool and to this paper.

References

[1] EnCase Forensic Edition (2006), see http://www.digitalintelligence.com/
software/guidancesoftware/encase/.

[2] The Sleuth Kit (2006), see: http://www.sleuthkit.org/.
[3] TheCoroner's Toolkit (2006), see http://www.porcupine.org/forensics/tct.html.
[4] LTOOLS (2006), see http://www.it.fht-esslingen.de/~zimmerma/software/

ltools/ltools.html http://www.linuxjournal.com/article/4138.
[5] Starlight (2006), see http://starlight.pnl.gov/.
[6] Ext2fs Home Page (2006), see http://web.mit.edu/tytso/www/linux/ext2.

html http://e2fsprogs.sourceforge.net/ext2.html.
[7] Brian Carrier, Open source Digital Forensic Tools, The Legal Argument,

see: http://www.digital-evidence.org/papers/opensrc_legal.pdf.
[8] Rob Grey, Commentary: A Comparison: Open Source vs. Closed Source

in Operating Systems, 2006 see: http://www.captechventures.com/news/
commentary/grey1.asp.

http://www.digitalintelligence.com/software/guidancesoftware/encase/
http://www.digitalintelligence.com/software/guidancesoftware/encase/
http://www.sleuthkit.org/
http://www.porcupine.org/forensics/tct.html
http://www.it.fht-esslingen.de/~zimmerma/software/ltools/ltools.html
http://www.it.fht-esslingen.de/~zimmerma/software/ltools/ltools.html
http://www.linuxjournal.com/article/4138
http://starlight.pnl.gov/
http://web.mit.edu/tytso/www/linux/ext2.html
http://web.mit.edu/tytso/www/linux/ext2.html
http://e2fsprogs.sourceforge.net/ext2.html
http://www.digital-evidence.org/papers/opensrc_legal.pdf
http://www.captechventures.com/news/commentary/grey1.asp
http://www.captechventures.com/news/commentary/grey1.asp

	An open source forensic tool to visualize digital evidence
	Introduction
	Related work
	Forensic tools for XML (FTXml)
	User and system requirements
	Technical approach and design choices
	System architecture
	JFAV architectural overview
	System design and implementation
	Presentation panels
	3D panel architecture
	Tree panel architecture
	Text panel architecture
	Case study
	Results and evaluation
	Summary discussion
	Why go for open source model as standards?
	Conclusion
	Acknowledgements
	References


